Advanced NMR &
Imaging

Week 14: Structure Determination from Chemical Shifts




Objectives

 Understand how chemical shifts are related to
structure.

e Understand how to calculate chemical shifts.

e Understand how chemical shifts can be used for
strucutre determination.



A spectrum of chemical shifts

This is quite
easy to measure.

200 150 100 50 0
13C chemical shift [ppm]

If we could calculate chemical shifts,
we could deduce the coordinates of the atoms....



EPFL
NMR Powder Crystallography
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DNP Enhanced NMR

Chemical Shift Driven
Structure Determination

200 10 0
8C chemical shift [ppm]

De novo full crystal structure of AZD8329 frgm a powder sample.
RMSD of 0.17 A (ADP of 0.0095 A2); 100% confidence

OH Salager et al., J. Am. Chem. Soc. 132, 2564 (2010), Engel et al., Phys. Chem. Chem. Phys. 21, 23385 (2019)
Baias et al., Phys. Chem. Chem. Phys. 15, 8069 (2013) Hofstetter, et al., J. Am. Chem. Soc. 141, 16624 (2019)
Baias et al., J. Am. Chem. Soc. 135, 17501 (2013) Cordova, et al., Nature Communications 12, 2964 (2021)
= Hofstetter et al, J. Am. Chem. Soc. 139, 2573 (2017)
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NMR UnCrystallography

Cementitious calcium Amorphous drugs 2D layered perovskites
silicate hydrates
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J. Phys. Chem. C 121, 32, 17188 (2017) Nature Commun. 12, 2964 (2021). J. Am. Chem. Soc. 143, 3, 1529 (2021)
J. Am. Chem. Soc. 142, 25, 11060 (2020) Nature Commun. 14, 5138 (2023). Nature, 592, 381 (2021)
J. Am. Chem. Soc. 144, 50, 22915 (2022) Science 370, 74 (2020).
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We Need to Talk About Chemical Shifts
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chemical shifts contain all the information we need to determine complete 3D crystal structures

= spectra of curcumin from Dai, Terskikh, Brinkmann, Wu, Crisi. Growth Des. 20, 7484 (2020)
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We Need to Talk About Chemical Shifts

image recognition

» “AcCat’

google, apple
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We Need to Talk About Chemical Shifts

10 5 0
'H chemical shift [ppm]

3C chemical shift [ppm]

Why can’t we determine structures directly from chemical shifts?
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Predicting Shifts from Structures

GIPAW / DFT - . .
» 10 5 0

'H chemical shift [ppm]

3C chemical shift [ppm]

We can predict shifts directly from structures...



PrL de novo Powder NMR Crystallography
from Chemical Shifts

generate a
comprehensive ensemble of S
candidate structures

calculate
chemical shifts

'

compare experiment with
predictions and determine
the structure from
the ensemble of
candidates

measure and
assign chemical shifts )
from a powder
sample

Salager, Day, Stein, Pickard, Elena, Emsley, J. Am. Chem. Soc. 132, 2564 (2010),
Baias, Widdifield, Dumez, Thompson, Cooper, Salager, Bassil, Stein, Lesage, Day, Emsley, Phys. Chem. Chem. Phys. 15, 8069 (2013)
= see also early study by Harper & Grant, Crys. Growth & Des. 6, 2315 (2006)



=PrL de novo Powder NMR Crystallography
from Chemical Shifts

generate a
comprehensive ensemble of
candidate structures

calculate
chemical shifts

Salager, Day, Stein, Pickard, Elena, Emsley, J. Am. Chem. Soc. 132, 2564 (2010),
Baias, Widdifield, Dumez, Thompson, Cooper, Salager, Bassil, Stein, Lesage, Day, Emsley, Phys. Chem. Chem. Phys. 15, 8069 (2013)
= see also early study by Harper & Grant, Crys. Growth & Des. 6, 2315 (2006)



=PrL de novo Powder NMR Crystallography
from Chemical Shifts

generate a

candidate structures

comprehensive ensemble of

calculate

chemical shifts

measure and
assign chemical shifts
from a powder
sample

>

compare experiment with
predictions and determine
the structure from
the ensemble of
candidates

Salager, Day, Stein, Pickard, Elena, Emsley, J. Am. Chem. Soc. 132, 2564 (2010),
Baias, Widdifield, Dumez, Thompson, Cooper, Salager, Bassil, Stein, Lesage, Day, Emsley, Phys. Chem. Chem. Phys. 15, 8069 (2013)
= see also early study by Harper & Grant, Crys. Growth & Des. 6, 2315 (2006)
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Predicting Shifts from Experience?
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Ab Initio Calculation of Chemical Shifts
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Experimental chemical shift tensor components
(p.p.m. from TMS)

Ramsey, 1950s.

Facelli & Grant, Nature 365, 325 (1993)

De Dios, Pearson & Oldfield, Science 260, 1491 (1993)
Pickard & Mauri, Phys. Rev. B, 6324, (2001).
Sebastiani, Mod. Phys. Lett. B 17 1301 (2003).

Determination of molecular
symmetry in crystalline
naphthalene using
solid-state NMR

Julio C. Facelli*} & David M. Grant™

* Department of Chemistry and T Utah Supercomputing Institute,
University of Utah, Salt Lake City, Utah 84112, USA

Hartman & Beran,

J. Chem. Theory Comput. 10, 4862 (2014).
Hartman, Kudla, Day, Mueller, Beran,
Phys. Chem. Chem. Phys. 18, 21686 (2016).



Why do we need computed shifts?
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"The structure of aquatolide originally proposed on the basis

4 O of 1D and 2D NMR analysis [...] contains an exceedingly rare
H [2]ladderane substructure. Intrigued by this structural unit,
' we initiated quantum-chemical calculations to verify the
H reported connectivity in preparation for studies of the
o) biogenesis of aquatolide in nature. As described below,
O however, these seemingly innocuous calculations set us on a
journey toward an extensive structural revision of this
complex natural product.”
San Feliciano, A.; Medarde, M.; Miguel del Corral, J. M.; Aramburu, A.; Gordaliza, M.; Lodewyk, M. W.; Soldi, C.; Jones, P. B.; Olmstead, M. M.; Rita, J.; Shaw, J. T.; Tantillo, D. J., The
u Barrero, A. F., Aquatolide. A new type of humulane-related sesquiterpene lactone. Correct Structure of Aquatolide-Experimental Validation of a Theoretically-Predicted Structural Revision.

Tetrahedron Lett 1989, 30 (21),2851-2854, JAm Chem Soc 2012, 134 (45), 18550-18553.
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Computed H chemical shift [ppm]

Why do we need computed shifts?

200

150+

100+

501

Computed 3C chemical shift [ppm]

Experimental 'H chemical shift [ppm]

San Feliciano, A.; Medarde, M.; Miguel del Corral, J. M.; Aramburu, A.; Gordaliza, M.;
u Barrero, A. F., Aquatolide. A new type of humulane-related sesquiterpene lactone.
Tetrahedron Lett 1989, 30 (21),2851-2854,
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Lodewyk, M. W.; Soldi, C.; Jones, P. B.; Olmstead, M. M.; Rita, J.; Shaw, J. T.; Tantillo, D. J., The
Correct Structure of Aquatolide-Experimental Validation of a Theoretically-Predicted Structural Revision.

. Original
(RMSE = 9.29 ppm)
Revised 8
(RMSE = 1.81 ppm)
o .
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Experimental 13C chemical shift [ppm]

JAm Chem Soc 2012, 134 (45), 18550-18553.
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Why do we need computed shifts?

Microcrystalline powder ; 3D coordinates in the solid state?
Q CHa i
H3C _N O C10, C11 L.
P C13, C14 1
O 180 160 140 120 100 80 60 40 20
8C chemical shift (ppm)

Baias, M.; Widdifield, C. M.; Dumez, J. N.; Thompson, H. P. G.; Cooper, T. G.;
Salager, E.; Bassil, S.; Stein, R. S.; Lesage, A.; Day, G. M.; Emsley, L., Powder
crystallography of pharmaceutical materials by combined crystal structure prediction and
solid-state H-1 NMR spectroscopy. Phys Chem Chem Phys 2013, 15 (21), 8069-8080.

15 10 5 0 5
"H chemical shift (ppm)
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Why do we need computed shifts?

a J\ KI

[PbI]*

’ MA/FA/Cs* o K*

Figure 1. Schematic representation of hypothetical scenarios for
potassium incorporation into the perovskite lattice: (a) parent APbly
lattice (A = MA, FA, Cs"), (b) A-site replacement, (c) interstitial K +
Assite vacancy, (d) B-site replacement + X-site vacancy.

¢ K0.10MA0.90Pb|3
d K0.10FA0.90Pb|3
n JL DFT (A-site)
p m J DFT (interstitial)
b J KPbl,
e AN S e o e ey o s oy o e e
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¥K shift [ppm]

Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Zakeeruddin, S. M.; Gratzel, M.; Emsley, L., Phase Segregation in Potassium-
Doped Lead Halide Perovskites from K-39 Solid-State NMR at 21.1 T. J Am Chem Soc 2018, 140 (23), 7232-7238.



The NMR Hamiltonian

I;: Nuclear spin i, pu; = ;hl; CZQZ Nuclear quadrupolar coupling tensor

]:)2-]-: Dipolar coupling tensor o: Nuclear chemical shielding tensor

J ij: Scalar coupling tensor



From Chemical Shielding to Chemical Shift

The applied (external) magnetic field induces current EA
within the electron cloud, which in turns generates

an induced magnetic field (Maxwell's equations) /

V x B = 110J —hi Boxt (1 - 5) I,

Bind — _E'Bext Beff — Bext + Bind

Intensity
BextA

A

Y

v

011 + 022 + 033
3

Isotropic chemical shielding: o =

The chemical shift is then defined as: 0 = Oef — O
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From Chemical Shielding to Chemical Shift

External magnetic
field introduced via
perturbation theory

(0) (1) (1) (1) =
UH) — [U) — IV (r) — By 4(r) — a(r)
Ground-state Perturbed Induced Induced Chemical
wavefunction wavefunction current magnetic field shielding tensor

To compute the chemical shielding, we need
"expensive" quantum mechanical computations.
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system size

From Chemical Shielding to Chemical Shift

classical empirical methods
@ pair potentials
@ force fields
@ shell models

quantum

empirical methods
W tight- ing

methods

« GW, BSE

v

accuracy



Density Functional Theory

Goal: solve the Schrodinger equation

HY = EV
This is too complicated, we need approximations!
1) Only treat electrons quantum mechanically: 2) Replace the wavefunction by the electronic density:
Born-Oppenheimer approximation Hohenberg-Kohn theorem

Every observable of a stationary quantum
mechanical system can be calculated from
the electronic density

U — p(r) = |9
E = Elp(r)]

Born, M.; Oppenheimer, R., Zur Quantentheorie der Molekeln. Annalen der Physik 1927, 389 (20), 457-484. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871.

Hel\Ijel — Eelqjel



Density Functional Theory

Kohn-Sham equation: replace the system of interacting particles (electrons) by
a system of non-interacting particles which yield the same electronic density

WY — BU ——» (—%W N veff(m) br(r) = eschs(x)

p(r) = gi(r)|?
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Density Functional Theory

Elp] = Te[p] + Venlp] + Veelp]

Zr-p(r
Z/ \RI—I‘\

Interaction of the electrons with a classical
potential generated by static nuclei

M= &

Interaction of the electron density at r with
the electron density at r'. But QM exchange
should be taken into account!

Self-interaction should also be dealt with

= -3 3 [ ot aman BT

The kinetic energy is expressed for non-interacting
electrons. In reality, the multi-electron system is
correlated!
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Computational cost

DFT: exchange-correlation
Eclp]

EXPp(r), Vp(r), B (r)]

Hybrid functionals
B3LYP, PBEDO, ...

meta-GGA ER-SAp(r), Vp(r), V2p(r)]
MO6-L, TPSS, ...

Generalised gradient approximation (GGA) ESSAp(r), Vp(r)]
PBE, BP86, BLYP, ...

Local density approximation (LDA) E;‘?A [p(r)]

VWN, PW92, ...

Accuracy
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DFT: self-consistent field (SCF) loop and variational principle

Initial guess p(r) or Py(r) (—»

Compute the potentials

VeN[p]’ VCoulomb[p]’ ch[p]
Veff[p] = VeN[p] + VCoulomb[p] + ch[p]

Solve the Kohn-Sham equations:

1
€,4r) = [—EVZ + Vegr| @)

Because DFT is based on
the variational principle,
self-consistency
corresponds to the true
ground-state density (within
the approximation of the
XC functional)

No

lYes

s the density self-consistent? | ¢————| p(r) = 2 | (1) &
i

Compute the property of interest

Energy, force, chemical shielding, ...

l

Compute the new density
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DFT: remarks

DFT is exact in principle
Failures of DFT refer to failure of the XC functional

No functional (so far) is accurate for all properties of interest
No matter what functional we use, there is always a case where it fails

Any functional can be applied to any electronic structure problem
The theory is ab initio but experience and intuition will determine which
functional is best for a particular use



DFT: Software

0.6
Single molecules — Slater function
== STO-1G
e 0.5 == STO-2G
/CH3 g — = STO-3G
HsC—N O 04l
O
O 2~ 6-31G
o 6-311G
: s , o 6-311G*
Atomic orbital-like basis set 6-311++G**
Gaussian (GTO) >4
ORCA (GTO) -
ADF (STO) % 1 2 5 &

Gauge-Including Atomic Orbitals (GIAO) formalism for chemical shift computation
Periodicity is not taken into account
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DFT: Software

Periodic systems E

Plane wave basis set

=2
1

= B

CASTEP
Quantum ESPRESSO 0 L X
VASP

Gauge-Including Projector Augmented Waves (GIPAW) formalism for chemical shift computation

More expensive than atomic orbital-like basis sets
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Computing NMR shieldings in solids

PHYSICAL REVIEW B, VOLUME 63, 245101

All-electron magnetic response with pseudopotentials: NMR chemical shifts

Chris J. Pickard*
Institut fir Geowissenschaften, Universitat Kiel, Olshausenstrasse 40 D-24098 Kiel, Germany

Francesco Mauri
Laboratoire de Minéralogie-Cristallographie de Paris, Université Pierre et Marie Curie, 4 Place Jussieu,
75252, Paris, Cedex 05, France
(Received 17 November 2000; published 10 May 2001)

A theory for the ab initio calculation of all-electron NMR chemical shifts in insulators using pseudopoten-
tials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension
to the projector augmented-wave approach of Blochl [P. E. Blochl, Phys. Rev. B 50, 17953 (1994)] and the
method of Mauri et al. [F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The
theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and
in periodic systems by comparison with plane-wave all-electron results for diamond.

DOI: 10.1103/PhysRevB.63.245101 PACS number(s): 71.45.Gm, 76.60.Cq, 71.15.—m
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Examples: Molecular crystals
(Cocaine Free Base)

structure A 8

calculated 'H chemical shifts (ppm)
[(6)]
o
o
00 < [} '

d o RMSD = 1.02 ppm

. . , . . \ \ , GIPAW planewave pseudo -potential
0 1 2 3 4 5 6 7 8 9 DFT-based calculations

1 . .
measured 'H chemical shifts Pickard and Mauri., Phys. Rev. B, 63, 245101(2001).
Segall et al., J. Phys. -Condens. Matter 14, 2717, (2002).

J. Am. Chem. Soc. 132, 2564 (2010),
Phys. Chem. Chem. Phys. 15, 8069 (2013)
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Examples: Molecular crystals
(Cocaine Free Base)

structure B

calculated "H chemical shifts (ppm)
(&)

4
09
(o]
3r o
2t 000
o |}
r RMSD = 0.28 ppm
0 , , , , , , . . , GIPAW planewave pseudo -potential
0 1 2 3 4 5 6 7 8 9 DFT-based calculations
measured 'H chemical shifts Pickard and Mauri., Phys. Rev. B, 63, 245101(2001).

Segall et al., J. Phys. -Condens. Matter 14, 2717, (2002).

J. Am. Chem. Soc. 132, 2564 (2010),
Phys. Chem. Chem. Phys. 15, 8069 (2013)
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Examples: Molecular crystals
(Cocaine Free Base) 0

—
N

0.8 ® ° i

04 -

0.2 1 -

TH rms chemical shift difference (ppm)

o

15 20 25 30
structure number

o

[
o
—
o

predicted energy

J. Am. Chem. Soc. 132, 2564 (2010),
Phys. Chem. Chem. Phys. 15, 8069 (2013)
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Powder NMR Crystallography from Proton Chemical Shifts

(Cocaine Free Base)

Unit Cell Single Molecule
AV to Single Crystal X-Ray: 0.8% RMSD to Single Crystal X-Ray: 0.07 A

J. Am. Chem. Soc. 132, 2564 (2010),
Phys. Chem. Chem. Phys. 15, 8069 (2013)



De Novo Determination of a Previously Unknown Structure
(Form 4 of AZD8329, a large drug molecule)

cis-conformation
P-1 triclinic space group

a=10.09A, b=1139A, c=1317A
a=99.1°, =59.5° y=73.3°

First de novo determination of an unknown structure of an organic solid from a powder sample.
RMSD of 0.17 A (ADP of 0.0095 A2); 100% confidence.

J. Am. Chem. Soc. 135, 17501 (2013)
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Computational Time

828 atoms

L
100k Years! ( o°
o
(%3]
3 10°
< !
\ *
102
102 108
N

atoms
DFT is widely used, but large system require a 816 atoms
prohibitively large computational time. We need a
way to accelerate the computation of chemical shifts

860 atoms

945 atoms

u Paruzzo, F. M.; Hofstetter, A.; Musil, F.; De, S.; Ceriotti, M.; Emsley, L., Chemical shifts in molecular solids by machine learning. Nat Commun 2018, 9.
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Proteins

Machine Learning Chemical Shifts

SHIFTX2

Han, B.; Liu, Y. F.;; Ginzinger, S. W.; Wishart, D. S.,
SHIFTX2: significantly improved protein chemical shift
prediction. J Biomol Nmr 2011, 50 (1), 43-57.

SPARTA+

Shen, Y.; Bax, A., SPARTA plus : a modest improvement in
empirical NMR chemical shift prediction by means of an
artificial neural network. J Biomol Nmr 2010, 48 (1), 13-22.

PROSHIFT
Meiler, J., PROSHIFT: Protein chemical shift prediction using
artificial neural networks. J Biomol Nmr 2003, 26 (1), 25-37.

Cuny, J.; Xie, Y.; Pickard, C. J.; Hassanali, A. A., Ab Initio
Quality NMR Parameters in Solid-State Materials Using a
High-Dimensional Neural-Network Representation. J Chem
Theory Comput 2016, 12 (2), 765-773.

Gas-phase / solvated molecules

ACD NMR Predictor Software
https://www.acdlabs.com/products/adh/nmr/nmr_pred OH NH,

ZT

MNova NMR Predictor (o) OH
https://mestrelab.com/software/mnova/nmr-predict

Molecular solids

ShiftML
https://shiftml.epfl.ch

Paruzzo, F. M.; Hofstetter, A.; Musil, F.; De, S;
Ceriotti, M.; Emsley, L., Chemical shifts in molecular
solids by machine learning. Nat Commun 2018, 9.
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Machine Learning

ML algorithms learn patterns from data only (statistical learning), without any rules given to them
The model is constructed using labelled training data,

Predictions can then be made very quickly for new data.



Machine Learning: ShiftML

A

Training Dataset ]
Experimental / computed

)@

Ao
W
|
:‘ A
}’

ML algorithms require a lot of consistent training data

A

LAz T

Experimental data scattered across the literature,
may lack consistency . ,

Computed properties are generally better suited
for statistical learning

ShiftML: 2,000 structures, 185,000 environments



Machine Learning: ShiftML

Dataset Representation /
Experimental / computed features

Vectors of numbers should be given as inputs to the ML model

These feature vectors should capture the property of interest

Chemical shift is determined by the local atomic environment

SOAP vectors: determines atomic positions around the nucleus
of interest




Machine Learning: ShiftML

Dataset I Representation / ; ML model
Experimental / computed features Neural network / KRR / ...
Kernel Ridge Regression (KRR): generalisation of linear regression Gaussian kernel  k(x, &) = exp(_%”x _ x/||2)
20

Laplacian kernel k(x, x') = exp(—élx - x’l)
Apply a non-linear transformation (kernel function) to the input data to
make the regression easier

o . " % )
4 Il. - mE
..'-" N, -
21 % =_'..' - .:.i' = :_
. a ae T (z,y) — (x,y,\/x2+y2) X
>~ o ™ " -
- gy ..'. " > \;: .
-2 n, :. " u .:=.. .
L N
g, "
-4 :
" :-|.' -
BV 0 2 a




Machine Learning: ShiftML

Dataset
Experimental / computed

Representation /
features

The model should be able to predict properties for data
not inlcuded in the training set (no underfitting)

We have to make sure that the model does not fit the
noise from the training set (overfitting)

ML model

Neural network / KRR / ...

l

Training / Validation

I Underfitting .."
50, "
40 i-. -

10

0

RMSE = 15.03

60

50

40

30

20

10

0

RMSE = 2.17

60

50

40

30

20

10

Overfitting

RMSE = 7.80

=10
=10 -5 0 5 10

-10

-10

-5 0 5 10

=10

=10

-5 0 5 10




Machine Learning: ShiftML

Dataset I Representation / ; ML model
Experimental / computed features Neural network / KRR / ...
The model should be able to predict properties for data l

not included in the training set (no underfitting)

Training / Validation

We have to make sure that the model does not fit the
noise from the training set (overfitting) |

‘ Training data ‘ Test data ‘

All Data

| Fold1 || Fold2 || Fold3 || Fold4 || Folds |

spiit1 | Fold1 || Fold2 || Fold3 | Fold4 | Folds

spitz | Fold1 | Fold2 || Fold3 | Fold4 | Folds

splits | Fold1 | Fold2 || Fold3 | Folda || Folds

Cross-validation can help us tune the
parameters of the model

> Finding Parameters

spiit4 | Fold1 || Foild2 || Fold3 || Fold4 || Folds

Spits | Fold1 || Fold2 || Fold3 || Fold4 | Folds

Final evaluation ﬂ Test data
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Machine Learning: ShiftML

Dataset ; Representation / ; ML model
features Neural network / KRR / ...

Experimental / computed

After training the model, predictions can be made

very quickly
i Training / Validation
(ol A 1584 atoms
_ og GIPAW DFT g l
% 102F
< | . g
~ . Predictions
4—'25 1 I
102} oo ML -
. e® 00 ©
102 108

atoms
Paruzzo, F. M.; Hofstetter, A.; Musil, F.; De, S.; Ceriotti, M.; Emsley, L., Chemical shifts in molecular solids by machine learning. Nat Commun 2018, 9.
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ShiftML: Comparison with DFT

20t ‘ 200
1 13 Al 15 17
H » o001 1€ / N 200} 'O
g 15 £ £ 100 £
g S 150 & &
\4 10} \_‘ \4 0 \g 0
< < 100 02_100 o)
9 & £ S 200
50 -200
o.
0 -300 -400
0 5 10 15 20 0 50 100 150 200 -300-200-100 0 100 200 -400 -200 0 200
1H 6(31IPAW / ppm 13C 6GIPAW / ppm 15N 0’GIPAW / ppm 170 OGIPAW / ppm
Rz =0.97 R2=0.99 Rz =0.99 Rz =0.99
RMSE = 0.49 ppm RMSE = 4.5 ppm RMSE = 13.3 ppm RMSE = 17.7 ppm

Paruzzo, F. M.; Hofstetter, A.; Musil, F.; De, S.; Ceriotti, M.; Emsley, L., Chemical shifts in molecular solids by machine learning. Nat Commun 2018, 9.
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ShiftML:

16} .

(00)

H Oy / ppm

0 4 8 12 16
1H 6Experimental / ppm

Comparison to Experiment

R2=0.99 ot
RMSEML =0.50 ppm 4,5-dimethylimidazole
RMSEprr = 0.43 ppm ( AZD8329
Uracil
(o]
THK NH HZC\N N )
o | /g )\ | />Theophylllne
CH,
Naproxen
¢} OH HiCo_ Q /CH3
N o HBC\@/CHS
o /
Cocaine NN

3,5-dimethylimidazole

Paruzzo, F. M.; Hofstetter, A.; Musil, F.; De, S.; Ceriotti, M.; Emsley, L., Chemical shifts in molecular solids by machine learning. Nat Commun 2018, 9.
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Machine Learning: Remarks

High accuracy at low cost
Ideal for large-scale screening

NOT ab initio
ML methods can only reliably be applied to systems that are similar to the training set
Prediction confidence is generally difficult to obtain



Conclusions

Chemical shifts can today be quite accurately predicted using
computational methods, and they are widely used for assignment,
elucidation, and strucutre determination.

DFT is the most widely used purely computational method to predict shifts

Different methods/programs/basis sets are used for DFT predictions for
single molecules or for periodic solids.

Predictions based on experimental databases of chemical shifts are the most
accurate tools for predicting chemical shifts in solution NMR today.

Machine learning models are becoming increasingly important for both solids
and liquids.

[none of today’s lecture content will be included in the exam]



Questions?



